Dieta ketogenică

Declarație: Societatea Internațională de Nutriție Sportivă (ISSN) oferă o analiză obiectivă și critică a utilizării unei diete ketogenice la adulții sănătoși care fac exerciții fizice, cu accent pe performanța la exerciții fizice și compoziția corporală. Cu toate acestea, această revizuire nu abordează utilizarea suplimentelor de cetone exogene. Următoarele puncte sintetizează poziția ISSN.

  1. O dietă ketogenă induce o stare de cetoză nutrițională, care este, în general, definită ca niveluri de cetone serice peste 0,5 mM. În timp ce mulți factori pot influența cantitatea zilnică de carbohidrați care va duce la aceste niveluri, un ghid general este un aport zilnic de carbohidrați de mai puțin de 50 de grame pe zi.

2. Ketoza nutrițională obținută prin restricție de carbohidrați și un aport alimentar ridicat de grăsimi nu este intrinsec dăunătoare și nu trebuie confundată cu cetoacidoza, o afecțiune care pune viața în pericol cel mai frecvent întâlnită în populațiile clinice și dereglarea metabolică.

3. O dietă ketogenă are efecte în mare măsură neutre sau dăunătoare asupra performanței atletice în comparație cu o dietă bogată în carbohidrați și săracă în grăsimi, în ciuda faptului că atinge niveluri semnificativ crescute de oxidare a grăsimilor în timpul exercițiilor fizice (~1,5 g/min).

4. Efectele de rezistență ale unei diete ketogenice pot fi influențate atât de statutul de antrenament, cât și de durata intervenției alimentare, dar sunt necesare cercetări suplimentare pentru a elucida aceste posibilități. Toate studiile care au implicat sportivi de elită au arătat o scădere a performanței de la o dietă ketogenă, toate cu durata de șase săptămâni sau mai puțin. Dintre cele două studii care au durat mai mult de șase săptămâni, doar unul a raportat un beneficiu semnificativ statistic al unei diete ketogenice.

5. O dietă ketogenă tinde să aibă efecte similare asupra forței maxime sau a câștigurilor de forță dintr-un program de antrenament de rezistență în comparație cu o dietă bogată în carbohidrați. Cu toate acestea, o minoritate de studii arată efecte superioare ale comparatorilor non-cetogeni.

6. În comparație cu o dietă mai bogată în carbohidrați și săracă în grăsimi, o dietă cetogenă poate provoca pierderi mai mari în greutate corporală, masă grasă și masă lipsită de grăsimi, dar poate crește și pierderile de țesut slab. Cu toate acestea, acest lucru se datorează probabil diferențelor în aportul de calorii și proteine, precum și schimbărilor în echilibrul fluidelor.

7. Nu există dovezi suficiente pentru a determina dacă o dietă ketogenă afectează diferit bărbații și femeile. Cu toate acestea, există o bază mecanică puternică pentru ca diferențele in functie de sex să existe ca răspuns la o dietă ketogenă.

Declarație privind conflictul de interese

Toți autorii declară că nu au interese concurente în ceea ce privește acest document.

BIC a primit granturi și contracte pentru a efectua cercetări privind suplimentele alimentare; a servit ca consultant plătit pentru industrie; a primit onorari pentru că a vorbit la conferințe și a scris articole laice despre ingrediente și subiecte de nutriție sportivă; este membru al International Protein Board care diseminează cunoștințele despre proteine ​​și produse proteice; a servit ca martor expert în numele reclamantului și apărare în cauze care implică suplimente alimentare; și primește compensație pentru scrierea și furnizarea de servicii educaționale legate de exerciții fizice și subiecte legate de nutriție.

AL a servit ca consultant plătit în industria suplimentelor și primește compensații pentru scrierea de materiale educaționale legate de sănătatea generală și nutriția.

TMS și CJM sunt acționari și fac parte din consiliul consultativ științific al Outplay Inc., care cercetează administrarea transdermică de medicamente și nutrienți.

JAR face parte din consiliul consultativ științific al Applied Behavior Systems Ltd.

STS a servit ca expert științific plătit în industria suplimentelor, dar nu are COI cu privire la această lucrare; ea nu are niciun conflict financiar de interese cu dietele ketogenice sau cu produsele cetonice.

SMA a primit granturi pentru cercetarea suplimentelor alimentare, a servit ca consultant plătit pentru industrie și a primit onorari pentru a vorbi la conferințe despre ingredientele și subiectele nutriției sportive.

DD este un inventator al brevetelor USF legate de aplicațiile cetozei terapeutice, consilier al Levels Health și coproprietar al Ketone Technologies LLC, care face cercetări, consultanță și evenimente de vorbire în public.

JRS a primit granturi și contracte pentru cercetarea suplimentelor alimentare, a servit ca consultant plătit pentru industrie și a primit onorari pentru că a vorbit la conferințe și a scris articole despre ingredientele și subiectele nutriției sportive.

CMK a primit finanțare din studiile de nutriție pentru a efectua studii științifice legate de exerciții fizice și nutriție și în prezent servește în calitate de consultanță și consiliere pentru diferite mărci de suplimente alimentare sau producători care vând produse legate de articolele discutate în această lucrare.

El nu a primit nicio finanțare de la aceste companii ca parte a acestei lucrări.

RBK a efectuat cercetări finanțate prin granturi și prin contract cu privire la suplimentele nutriționale acordate universităților cu care a fost afiliat, a primit un onorariu pentru realizarea de prezentări științifice și a servit ca expert științific plătit. Nu are niciun conflict financiar de interese cu dietele ketogenice sau cu produsele cetonice.

MJO a primit granturi și contracte de la companii care produc suplimente alimentare și a fost numit în consiliul consultativ științific al unor companii de exerciții și nutriție.

JA este CEO al Societății Internaționale de Nutriție Sportivă, o organizație nonprofit 501c3, care primește sprijin de la o varietate de companii din categoria nutriție sportivă.

By. Bitanu-Alexandru

Referinte:

  1. Kerksick CM, Wilborn CD, Roberts MD, et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr [Internet]. 2018;15(1):38. doi: 10.1186/s12970-018-0242-y – DOI – PMC – PubMed 
  1. Kerksick CM, Arent S, Schoenfeld BJ, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr [Internet]. 2017;14(1):33. doi: 10.1186/s12970-017-0189-4 – DOI – PMC – PubMed 
  1. Aragon AA, Schoenfeld BJ, Wildman R, et al. International society of sports nutrition position stand: diets and body composition. J Int Soc Sports Nutr [Internet]. 2017;14(1):16. doi: 10.1186/s12970-017-0174-y – DOI – PMC – PubMed 
  1. Cahill GF. Fuel metabolism in starvation. Annu Rev Nutr [Internet]. 2006;26:1–40. doi: 10.1146/annurev.nutr.26.061505.111258 – DOI – PubMed 
  1. Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol [Internet]. 2015;33:125–131. doi: 10.1016/j.ceb.2015.02.003 – DOI – PMC – PubMed 
  1. Kalapos MP. On the mammalian acetone metabolism: from chemistry to clinical implications. Biochim Biophys Acta [Internet]. 2003;1621(2):122–139. Available from doi: 10.1016/s0304-4165(03)00051-5 – DOI – PubMed 
  1. Musa-Veloso K, Likhodii SS, Cunnane SC. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am J Clin Nutr [Internet]. 2002;76(1):65–70. doi: 10.1093/ajcn/76.1.65 – DOI – PubMed 
  1. Evans M, Cogan KE, Egan B. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol [Internet]. 2017;595(9):2857–2871. doi: 10.1113/JP273185 – DOI – PMC – PubMed 
  1. Volek JS, Freidenreich DJ, Saenz C, et al. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism [Internet]. 2016;65(3):100–110. doi: 10.1016/j.metabol.2015.10.028 – DOI – PubMed 
  1. Volek JS, Noakes T, Phinney SD. Rethinking fat as a fuel for endurance exercise. EJSS [Internet]. 2015;15(1):13–20. doi: 10.1080/17461391.2014.959564 – DOI – PubMed
  2.  
  1. Shaw DM, Merien F, Braakhuis A, et al. Exogenous ketone supplementation and keto-adaptation for endurance performance: disentangling the effects of two distinct metabolic states. Sports Med [Internet]. 2020;50(4):641–656. doi: 10.1007/s40279-019-01246-y – DOI – PubMed 
  1. Robinson AM, Williamson DH. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev [Internet]. 1980;60(1):143–187. Available from http://www.physiology.org/doi/10.1152/physrev.1980.60.1.143 – DOI – PubMed 
  1. Owen OE, Felig P, Morgan AP, et al. Liver and kidney metabolism during prolonged starvation. J Clin Invest [Internet]. 1969;48:574–583. doi: 10.1172/JCI106016 – DOI – PMC – PubMed 
  1. Reichard GA Jr, Owen OE, Haff AC, et al. Ketone-body production and oxidation in fasting obese humans. J Clin Invest [Internet]. 1974;53:508–515. doi: 10.1172/JCI107584 – DOI – PMC – PubMed 
  1. Sapir DG, Owen OE. Renal conservation of ketone bodies during starvation. Metabolism [Internet]. 1975;24(1):23–33. doi: 10.1016/0026-0495(75)90004-9 – DOI – PubMed 
  1. Owen OE, Reichard GA. Human forearm metabolism during progressive starvation. J Clin Invest [Internet]. 1971;50:1536–1545. doi: 10.1172/JCI106639 – DOI – PMC – PubMed 
  1. Balasse EO, Féry F. Ketone body production and disposal: Effects of fasting, diabetes, and exercise. Diabetes/Metabolism Rev [Internet]. 1989;5(3):247–270. doi: 10.1002/dmr.5610050304 – DOI – PubMed
  1. Taggart AKP, Kero J, Gan X, et al. (d)-β-Hydroxybutyrate inhibits adipocyte lipolysis via the Nicotinic Acid Receptor PUMA-G. J Biol Chem [Internet]. 2005;280(29):26649–26652. doi: 10.1074/jbc.C500213200 – DOI – PubMed 
  1. Westman EC, Feinman RD, Mavropoulos JC, et al. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr [Internet]. 2007;86(2):276–284. doi: 10.1093/ajcn/86.2.276 – DOI – PubMed 
  1. Sumithran P, Proietto J. Ketogenic diets for weight loss: a review of their principles, safety and efficacy. Obes Res Clin Pract [Internet]. 2008;2(1):1–13. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1871403X07000816 – PubMed
  1. Burke LM, Ross ML, Garvican-Lewis LA, et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol [Internet]. 2017;595(9):2785–2807. doi: 10.1113/JP273230 – DOI – PMC – PubMed
  1. Wilson JM, Lowery RP, Roberts MD, et al. Effects of ketogenic dieting on body composition, strength, power, and hormonal profiles in resistance training men. J Strength Cond Res [Internet]. 2020;34. Available from 12):3463–3474. doi: 10.1519/JSC.0000000000001935 – DOI – PubMed 
  1. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med [Internet]. 2001;31(10):725–741. doi: 10.2165/00007256-200131100-00003 – DOI – PubMed 
  1. Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab [Internet]. 2010;2010:1–13. doi: 10.1155/2010/905612 – DOI – PMC – PubMed
  1. Kominami K, Nishijima H, Imahashi K, et al. Gas exchange threshold to guide exercise training intensity of older individuals during cardiac rehabilitation. Medicine [Internet]. 2021;100(42):e27540. doi: 10.1097/MD.0000000000027540 – DOI – PMC – PubMed
  1. Ferguson BS, Rogatzki MJ, Goodwin ML, et al. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol [Internet]. 2018;118(4):691–728. doi: 10.1007/s00421-017-3795-6 – DOI – PubMed
  1. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol [Internet]. 2004;558(1):5–30. doi: 10.1113/jphysiol.2003.058701 – DOI – PMC – PubMed
  1. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol [Internet]. 2004;287(3):R502–16. doi: 10.1152/ajpregu.00114.2004 – DOI – PubMed
  1. Kreider RB, Kalman DS, Antonio J, et al. International society of sports nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr [Internet]. 2017;14(1):18. doi: 10.1186/s12970-017-0173-z – DOI – PMC – PubMed
  1. Phinney SD, Bistrian BR, Evans WJ, et al. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism [Internet]. 1983;32(8):769–776. doi: 10.1016/0026-0495(83)90106-3 – DOI – PubMed 
  1. Burke LM, Hawley JA. Effects of short-term fat adaptation on metabolism and performance of prolonged exercise. Med Sci Sports Exerc [Internet]. 2002;34(9):1492–1498. doi: 10.1097/00005768-200209000-00015 – DOI – PubMed
  1. Yeo WK, Carey AL, Burke L, et al. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab [Internet]. 2011;36(1):12–22. doi: 10.1139/H10-089 – DOI – PubMed
  1. Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol [Internet]. 2005;98(1):160–167. doi: 10.1152/japplphysiol.00662.2003 – DOI – PubMed 
  1. Shaw DM, Merien F, Braakhuis A, et al. Effect of a ketogenic diet on submaximal exercise capacity and efficiency in runners. Med Sci Sports Exerc [Internet]. 2019; Available from 51(10):2135–2146. doi: 10.1249/MSS.0000000000002008 – DOI – PubMed 
  1. Dostal T, Plews DJ, Hofmann P, et al. Effects of a 12-week very-low carbohydrate high-fat diet on maximal aerobic capacity, high-intensity intermittent exercise, and cardiac autonomic regulation: non-randomized parallel-group study. Front Physiol [Internet]. 2019;10:912. doi: 10.3389/fphys.2019.00912 – DOI – PMC – PubMed
  1. Prins PJ, Noakes TD, Welton GL, et al. High rates of fat oxidation induced by a low-carbohydrate, high-fat diet, do not impair 5-km running performance in competitive recreational athletes. J Sports Sci Med [Internet]. 2019;18(4):738–750. Available from https://www.ncbi.nlm.nih.gov/pubmed/31827359 – PMC – PubMed
  1. Burke LM, Sharma AP, Heikura IA, et al. Crisis of confidence averted: impairment of exercise economy and performance in elite race walkers by ketogenic low carbohydrate, high fat (LCHF) diet is reproducible. PLoS One [Internet]. 2020;15(6):e0234027. doi: 10.1371/journal.pone.0234027 – DOI – PMC – PubMed 
  1. Burke LM, Whitfield J, Heikura IA, et al. Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. J Physiol [Internet]. 2021;599(3):771–790. doi: 10.1113/JP280221 – DOI – PMC – PubMed
  1. Whitfield J, Burke LM, McKay AKA, et al. Acute ketogenic diet and ketone ester supplementation impairs race walk performance. Med Sci Sports Exerc [Internet]. 2021;53(4):776–784. doi: 10.1249/MSS.0000000000002517 – DOI – PMC – PubMed
  1. Dearlove DJ, Soto Mota A, Hauton D, et al. The effects of endogenously- and exogenously-induced hyperketonemia on exercise performance and adaptation. Physiol Rep [Internet]. 2022;10(10):e15309. doi: 10.14814/phy2.15309 – DOI – PMC – PubMed 
  1. Wachsmuth NB, Aberer F, Haupt S, et al. The impact of a high-carbohydrate/low fat vs. low-carbohydrate diet on performance and body composition in physically active adults: a cross-over controlled trial. Nutrients [Internet]. 2022;14(3):423. doi: 10.3390/nu14030423 – DOI – PMC – PubMed 
  1. Prins PJ, Noakes TD, Buga A, et al. Low and high carbohydrate isocaloric diets on performance, fat oxidation, glucose and cardiometabolic health in middle age males. Front Nutr [Internet]. 2023;10:1084021. doi: 10.3389/fnut.2023.1084021 – DOI – PMC – PubMed
  1. Cipryan L, Plews DJ, Ferretti A, et al. Effects of a 4-week very low-carbohydrate diet on high-intensity interval training responses. J Sports Sci Med [Internet]. 2018;17(2):259–268. https://www.ncbi.nlm.nih.gov/pubmed/29769827 – PMC – PubMed 
  1. Fleming J, Sharman MJ, Avery NG, et al. Endurance capacity and high-intensity exercise performance responses to a high fat diet. Int J Sport Nutr Exerc Metab [Internet]. 2003;13(4):466–478. Available from: https://www.ncbi.nlm.nih.gov/pubmed/14967870 – PubMed
  1. Heatherly AJ, Killen LG, Smith AF, et al. Effects of ad libitum low-carbohydrate high-fat dieting in middle-age male runners. Med Sci Sports Exerc [Internet]. 2018;50(3):570–579. Available from doi: 10.1249/MSS.0000000000001477 – DOI – PubMed 
  1. McSwiney FT, Wardrop B, Hyde PN, et al. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism [Internet]. 2018;81:25–34. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0026049517302986 – PubMed
  1. Wroble KA, Trott MN, Schweitzer GG, et al. Low-carbohydrate, ketogenic diet impairs anaerobic exercise performance in exercise-trained women and men: a randomized-sequence crossover trial. J Sports Med Phys Fitness [Internet]. 2019;59(4):600–607. doi: 10.23736/S0022-4707.18.08318-4 – DOI – PubMed
  1. Rhyu H-S, Cho S-Y. The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of taekwondo athletes. J Exerc Rehabil [Internet]. 2014;10(5):326–331. doi: 10.12965/jer.140160 – DOI – PMC – PubMed 
  1. Zajac A, Poprzecki S, Maszczyk A, et al. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients [Internet]. 2014;6(7):2493–2508. doi: 10.3390/nu6072493 – DOI – PMC – PubMed
  1. Michalczyk MM, Chycki J, Zajac A, et al. Anaerobic performance after a Low-Carbohydrate Diet (LCD) Followed by 7 days of carbohydrate loading in male basketball players. Nutrients [Internet]. 2019;11(4):11. doi: 10.3390/nu11040778 – DOI – PMC – PubMed
  1. Lambert EV, Speechly DP, Dennis SC, et al. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol [Internet]. 1994;69(4):287–293. doi: 10.1007/BF00392032 – DOI – PubMed
  1. Goedecke JH, Christie C, Wilson G, et al. Metabolic adaptations to a high-fat diet in endurance cyclists. Metabolism [Internet]. 1999;48(12):1509–1517. doi: 10.1016/S0026-0495(99)90238-X – DOI – PubMed
  1. O’Keeffe KA, Keith RE, Wilson GD, et al. Dietary carbohydrate intake and endurance exercise performance of trained female cyclists. Nutr Res [Internet]. 1989;9(8):819–830. doi: 10.1016/S0271-5317(89)80027-2 – DOI
  1. Chiarello N, Leger B, De Riedmatten M, et al. Effect of a four-week isocaloric ketogenic diet on physical performance at very high-altitude: a pilot study. BMC Sports Sci Med Rehabil [Internet]. 2023;15(1):37. doi: 10.1186/s13102-023-00649-9 – DOI – PMC – PubMed
  1. Klement RJ, Frobel T, Albers T, et al. A pilot case study on the impact of a self-prescribed ketogenic diet on biochemical parameters and running performance in healthy and physically active individuals. Nutr And Med [Internet]. 2013. [cited 2021 Sep 10];1:10–37. Available from: https://www.researchgate.net/publication/248398348_A_pilot_case_study_on…
  1. Waldman HS, Krings BM, Basham SA, et al. Effects of a 15-day low carbohydrate, high-fat diet in resistance-trained men. J Strength Cond Res [Internet]. 2018;32(11):3103–3111. doi: 10.1519/JSC.0000000000002282 – DOI – PubMed
  1. Zinn C, Wood M, Williden M, et al. Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes. J Int Soc Sports Nutr [Internet]. 2017;14(1):22. doi: 10.1186/s12970-017-0180-0 – DOI – PMC – PubMed
  1. McSwiney FT, Fusco B, McCabe L, et al. Changes in body composition and substrate utilization after a short-term ketogenic diet in endurance-trained males. Biol Sport [Internet]. 2021;38(1):145–152. Available from doi: 10.5114/biolsport.2020.98448 – DOI – PMC – PubMed
  1. Durkalec-Michalski K, Nowaczyk PM, Główka N, et al. Is a four-week ketogenic diet an effective nutritional strategy in CrossFit-trained female and male athletes? Nutrients [Internet]. 2021;13. Available from (3):864. doi: 10.3390/nu13030864 – DOI – PMC – PubMed 
  1. Gregory J, Johns DP, Walls JT. Relative vs. absolute physiological measures as predictors of mountain bike cross-country race performance. Journal Of Strength And Conditioning Research [Internet]. 2007;21(1):17–22. Available from doi: 10.1519/R-17635.1 – DOI – PubMed
  1. Maciejczyk M, Wiecek M, Szymura J, et al. Influence of increased body mass and body composition on cycling anaerobic power. J Strength Cond Res [Internet]. 2015;29(1):58–65. Available from doi: 10.1519/JSC.0000000000000727 – DOI – PubMed
  1. Phinney SD, Bistrian BR, Evans WJ et al, The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism [Internet]. 1983;32:769–776. Available from https://www.ncbi.nlm.nih.gov/pubmed/6865776 – PubMed
  1. McLellan TM, Cheung SS, Jacobs I. Variability of time to exhaustion during submaximal exercise. Can J Appl Physiol [Internet]. 1995;20(1):39–51. Available from doi: 10.1139/h95-003 – DOI – PubMed
  1. Faude O, Hecksteden A, Hammes D, et al. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Appl Physiol Nutr Metab [Internet]. 2017;42(2):142–147. Available from doi: 10.1139/apnm-2016-0375 – DOI – PubMed 
  1. Lucía A, Hoyos J, Pérez M, et al. Heart rate and performance parameters in elite cyclists: a longitudinal study. Medicine & Science In Sports & Exercise [Internet]. 2000;32(10):1777–1782. Available from: https://www.ncbi.nlm.nih.gov/pubmed/11039652 – PubMed
  1. Fernández-García B, Pérez-Landaluce J, Rodríguez-Alonso M, et al. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc [Internet]. 2000;32:1002–1006. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10795793 – PubMed
  1. Jones AM, Kirby BS, Clark IE, et al. Physiological demands of running at 2-hour marathon race pace. J Appl Physiol [Internet]. 2021;130(2):369–379. Available from doi: 10.1152/japplphysiol.00647.2020 – DOI – PubMed 
  1. Molinari CA, Edwards J, Billat V. Maximal time spent at VO2max from sprint to the marathon. Int J Environ Res Public Health [Internet]. 2020;17. Available from 24):9250. doi: 10.3390/ijerph17249250 – DOI – PMC – PubMed 
  1. Gordon D, Wightman S, Basevitch I, et al. Physiological and training characteristics of recreational marathon runners. Open Access J Sports Med [Internet]. 2017;8:231–241. Available from doi: 10.2147/OAJSM.S141657 – DOI – PMC – PubMed
  1. Phinney SD. Ketogenic diets and physical performance. Nutr Metab [Internet]. 2004;1(1):2. Available from doi: 10.1186/1743-7075-1-2 – DOI – PMC – PubMed
  1. Paoli A, Grimaldi K, D’Agostino D, et al. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J Int Soc Sports Nutr [Internet]. 2012;9(1):34. Available from http://jissn.biomedcentral.com/articles/10.1186/1550-2783-9-34 – DOI – PMC – PubMed
  1. Tiller NB, Roberts JD, Beasley L, et al. International society of sports nutrition position stand: nutritional considerations for single-stage ultra-marathon training and racing. J Int Soc Sports Nutr [Internet]. 2019;16(1):50. doi: 10.1186/s12970-019-0312-9 – DOI – PMC – PubMed
  1. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol [Internet]. 2008;586(1):35–44. Available from doi: 10.1113/jphysiol.2007.143834 – DOI – PMC – PubMed
  1. Krogh A, Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy: with appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochem J [Internet]. 1920;14(3–4):290–363. Available from doi: 10.1042/bj0140290 – DOI – PMC – PubMed
  1. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol [Internet]. 1983;55(2):628–634. Available from doi: 10.1152/jappl.1983.55.2.628 – DOI – PubMed
  1. Petrick HL, Brunetta HS, Pignanelli C, et al. In vitro ketone-supported mitochondrial respiration is minimal when other substrates are readily available in cardiac and skeletal muscle. J Physiol [Internet]. 2020;598(21):4869–4885. Available from doi: 10.1113/JP280032 – DOI – PubMed
  1. Hall KD, Chen KY, Guo J, et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr [Internet]. 2016;104(2):324–333. Available from doi: 10.3945/ajcn.116.133561 – DOI – PMC – PubMed
  1. Spriet LL, Heigenhauser GJF. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exerc Sport Sci Rev [Internet]. 2002;30(2):91–95. Available from doi: 10.1097/00003677-200204000-00009 – DOI – PubMed
  1. Peters SJ, Harris RA, Wu P, et al. Human skeletal muscle PDH kinase activity and isoform expression during a 3-day high-fat/low-carbohydrate diet. Am J Physiol Endocrinol Metab [Internet]. 2001;281(6):E1151–8. Available from doi: 10.1152/ajpendo.2001.281.6.E1151 – DOI – PubMed
  1. Stellingwerff T, Spriet LL, Watt MJ, et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab [Internet]. 2006;290(2):E380–8. Available from doi: 10.1152/ajpendo.00268.2005 – DOI – PubMed
  1. Billat VL, Demarle A, Slawinski J, et al. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc [Internet]. 2001;33(12):2089–2097. Available from doi: 10.1097/00005768-200112000-00018 – DOI – PubMed
  1. Leckey JJ, Burke LM, Morton JP, et al. Altering fatty acid availability does not impair prolonged, continuous running to fatigue: evidence for carbohydrate dependence. J Appl Physiol [Internet]. 2016;120(2):107–113. Available from doi: 10.1152/japplphysiol.00855.2015 – DOI – PubMed
  1. Hawley JA, Leckey JJ. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med [Internet]. 2015;45 Suppl 1):S5–12. Available from doi: 10.1007/s40279-015-0400-1 – DOI – PMC – PubMed
  1. Burke LM. Ketogenic low-CHO, high-fat diet: the future of elite endurance sport? J Physiol [Internet]. 2021;599(3):819–843. Available from doi: 10.1113/JP278928 – DOI – PMC – PubMed
  1. Miller VJ, LaFountain RA, Barnhart E, et al. A ketogenic diet combined with exercise alters mitochondrial function in human skeletal muscle while improving metabolic health. Am J Physiol Endocrinol Metab [Internet]. 2020;319(6):E995–1007. Available from doi: 10.1152/ajpendo.00305.2020 – DOI – PubMed
  1. Wood RJ, Gregory SM, Sawyer J, et al. Preservation of fat-free mass after two distinct weight loss diets with and without progressive resistance exercise. Metab Syndr Relat Disord [Internet]. 2012;10(3):167–174. Available from http://online.liebertpub.com/doi/abs/10.1089/met.2011.0104 – DOI – PubMed
  1. Gregory RM. A low-carbohydrate ketogenic diet combined with 6-weeks of crossfit training improves body composition and performance. Int J Sports Exerc Med [Internet]. 2017;3. Available from 2). doi: 10.23937/2469-5718/1510054 – DOI
  1. Kephart W, Pledge C, Roberson P, et al. The three-month effects of a ketogenic diet on body composition, blood parameters, and performance metrics in CrossFit trainees: a pilot study. Sportscience [Internet]. 2018;6(1):1. Available from http://www.mdpi.com/2075-4663/6/1/1 – PMC – PubMed 
  1. Greene DA, Varley BJ, Hartwig TB, et al. A low-carbohydrate ketogenic diet reduces body mass without compromising performance in powerlifting and olympic weightlifting athletes. J Strength Cond Res [Internet]. 2018;32(12):3373–3382. Available from doi: 10.1519/JSC.0000000000002904 – DOI – PubMed
  1. LaFountain RA, Miller VJ, Barnhart EC, et al. Extended ketogenic diet and physical training intervention in military personnel. Mil Med [Internet]. 2019; Available from 184(9–10):e538–e547. doi: 10.1093/milmed/usz046 – DOI – PubMed
  1. Vargas-Molina S, Petro JL, Romance R, et al. Effects of a ketogenic diet on body composition and strength in trained women. J Int Soc Sports Nutr [Internet]. 2020;17(1):19. Available from doi: 10.1186/s12970-020-00348-7 – DOI – PMC – PubMed
  1. Paoli A, Cenci L, Pompei P, et al. Effects of two months of very low carbohydrate ketogenic diet on body composition, muscle strength, muscle area, and blood parameters in competitive natural body builders. Nutrients [Internet]. 2021;13. Available from 2):374. doi: 10.3390/nu13020374 – DOI – PMC – PubMed
  1. Vidić V, Ilić V, Toskić L, et al. Effects of calorie restricted low carbohydrate high fat ketogenic vs. non-ketogenic diet on strength, body-composition, hormonal and lipid profile in trained middle-aged men. Clin Nutr [Internet]. 2021;40(4):1495–1502. Available from doi: 10.1016/j.clnu.2021.02.028 – DOI – PubMed
  1. Sawyer JC, Wood RJ, Davidson PW, et al. Effects of a short-term carbohydrate-restricted diet on strength and power performance. J Strength Cond Res [Internet]. 2013;27(8):2255–2262. Available from doi: 10.1519/JSC.0b013e31827da314 – DOI – PubMed
  1. Meirelles CM, Gomes PSC. Effects of short-term carbohydrate restrictive and conventional hypoenergetic diets and resistance training on strength gains and muscle thickness. J Sports Sci Med [Internet]. 2016;15(4):578–584. Available from https://www.ncbi.nlm.nih.gov/pubmed/27928202 – PMC – PubMed
  1. Kruszewski M, Kruszewski A, Tabęcki R, et al. Effectiveness of high-fat and high-carbohydrate diets on body composition and maximal strength after 15 weeks of resistance training. Adv Med Sci [Internet]. 2024;69(1):139–146. Available from doi: 10.1016/j.advms.2024.02.008 – DOI – PubMed
  1. Chatterton S, Helms ER, Zinn C, et al. The effect of an 8-week low carbohydrate high fat (LCHF) diet in sub-elite Olympic weightlifters and powerlifters on strength, body composition, mental state and adherence: a pilot case-study. J Australian Strength And Conditioning [Internet]. 2017. [cited 2021 Sep 14];25:6–13. Available from: https://www.researchgate.net/publication/316675957_The_effect_of_an_8-we…
  1. Gorostiaga EM, Navarro-Amézqueta I, Cusso R, et al. Anaerobic energy expenditure and mechanical efficiency during exhaustive leg press exercise. PLoS One [Internet]. 2010;5(10):e13486. Available from doi: 10.1371/journal.pone.0013486 – DOI – PMC – PubMed
  1. Garnacho-Castaño MV, Dominguez R, Maté-Muñoz JL. Understanding the meaning of lactate threshold in resistance exercises. Int J Sports Med [Internet]. 2015;36(5):371–377. Available from doi: 10.1055/s-0034-1398495 – DOI – PubMed
  1. Garnacho-Castaño MV, Albesa-Albiol L, Serra-Payá N, et al. The slow component of oxygen uptake and efficiency in resistance exercises: a comparison with endurance exercises. Front Physiol [Internet]. 2019;10:357. Available from doi: 10.3389/fphys.2019.00357 – DOI – PMC – PubMed
  1. Albesa-Albiol L, Serra-Payá N, Garnacho-Castaño MA, et al. Ventilatory efficiency during constant-load test at lactate threshold intensity: endurance versus resistance exercises. PLoS One [Internet]. 2019;14(5):e0216824. Available from doi: 10.1371/journal.pone.0216824 – DOI – PMC – PubMed
  1. de Sousa NMF, Magosso RF, Pereira GB, et al. Acute cardiorespiratory and metabolic responses during resistance exercise in the lactate threshold intensity. Int J Sports Med [Internet]. 2012;33:108–113. Available from doi: 10.1055/s-0031-1286315 – DOI – PubMed
  1. Gorostiaga EM, Navarro-Amézqueta I, Calbet JAL, et al. Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One [Internet]. 2012;7(7):e40621. Available from doi: 10.1371/journal.pone.0040621 – DOI – PMC – PubMed
  1. Tesch PA, Colliander EB, Kaiser P. Muscle metabolism during intense, heavy-resistance exercise. Eur J Appl Physiol Occup Physiol [Internet]. 1986;55(4):362–366. Available from doi: 10.1007/BF00422734 – DOI – PubMed
  1. Koopman R, Manders RJF, Jonkers RAM, et al. Intramyocellular lipid and glycogen content are reduced following resistance exercise in untrained healthy males. Eur J Appl Physiol [Internet]. 2006;96:525–534. Available from doi: 10.1007/s00421-005-0118-0 – DOI – PubMed
  1. Macdougall JD, Ray S, Sale DG, et al. Muscle substrate utilization and lactate production during weightlifting. Can J Appl Physiol [Internet]. 1999;24(3):209–215. Available from doi: 10.1139/h99-017 – DOI – PubMed
  1. Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev [Internet]. 2018;76(4):243–259. Available from doi: 10.1093/nutrit/nuy001 – DOI – PMC – PubMed
  1. Fournier PA, Bräu L, Ferreira L-B, et al. Glycogen resynthesis in the absence of food ingestion during recovery from moderate or high intensity physical activity: novel insights from rat and human studies. Comparative Biochemistry And Physiology Part A: Molecular & Integrative Physiology [Internet]. 2002;133(3):755–763. Available from: https://www.ncbi.nlm.nih.gov/pubmed/12443931 – PubMed 
  1. Fournier PA, Fairchild TJ, Ferreira LD, et al. Post-exercise muscle glycogen repletion in the extreme: effect of food absence and active recovery. J Sports Sci Med [Internet]. 2004;3(3):139–146. Available from https://www.ncbi.nlm.nih.gov/pubmed/24482591 – PMC – PubMed
  1. Ludwig DS, Ebbeling CB. The carbohydrate-insulin model of obesity: beyond “calories in, calories out. JAMA Intern Med [Internet]. 2018;178(8):1098–1103. Available from doi: 10.1001/jamainternmed.2018.2933 – DOI – PMC – PubMed
  1. Hall KD, Guyenet SJ, Leibel RL. The carbohydrate-insulin model of obesity is difficult to reconcile with current evidence. JAMA Intern Med [Internet]. 2018;178(8):1103–1105. Available from doi: 10.1001/jamainternmed.2018.2920 – DOI – PubMed
  1. Volek JS, Sharman MJ, Love DM, et al. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism [Internet]. 2002;51:864–870. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0026049502000100 – PubMed
  1. Jabekk PT, Moe IA, Meen HD, et al. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. Nutr Metab [Internet]. 2010;7(1):17. Available from http://nutritionandmetabolism.biomedcentral.com/articles/10.1186/1743-70… – DOI – PMC – PubMed
  1. Vargas S, Romance R, Petro JL, et al. Efficacy of ketogenic diet on body composition during resistance training in trained men: a randomized controlled trial. J Int Soc Sports Nutr [Internet]. 2018;15(1):31. Available from doi: 10.1186/s12970-018-0236-9 – DOI – PMC – PubMed
  1. Michalczyk M, Zajac A, Mikolajec K, et al. No modification in blood lipoprotein concentration but changes in body composition after 4 weeks of Low Carbohydrate Diet (LCD) followed by 7 days of carbohydrate loading in basketball players. J Hum Kinet [Internet]. 2018;65(1):125–137. Available from doi: 10.2478/hukin-2018-0102 – DOI – PMC – PubMed
  1. Capling L, Beck K, Gifford J, et al. Validity of dietary assessment in athletes: a systematic review. Nutrients [Internet]. 2017;9(12):1313. Available from http://www.mdpi.com/2072-6643/9/12/1313 – PMC – PubMed
  1. Johnstone AM, Horgan GW, Murison SD, et al. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr [Internet]. 2008;87(1):44–55. Available from doi: 10.1093/ajcn/87.1.44 – DOI – PubMed
  1. Paoli A, Bosco G, Camporesi EM, et al. Ketosis, ketogenic diet and food intake control: a complex relationship. Frontiers In Psychology [Internet]. 2015;6:27. Available from doi: 10.3389/fpsyg.2015.00027 – DOI – PMC – PubMed
  1. Westerterp-Plantenga MS, Lemmens SG, Westerterp KR. Dietary protein – its role in satiety, energetics, weight loss and health. Br J Nutr [Internet]. 2012;108(S2):S105–12. Available from doi: 10.1017/S0007114512002589 – DOI – PubMed
  1. Murphy C, Koehler K. Energy deficiency impairs resistance training gains in lean mass but not strength: a meta-analysis and meta-regression. Scand J Med Sci Sports [Internet]. 2022;32(1):125–137. Available from doi: 10.1111/sms.14075 – DOI – PubMed
  1. Morton RW, Murphy KT, McKellar SR, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med [Internet]. 2017;5:bjsports – 2017–097608. Available from http://bjsm.bmj.com/lookup/doi/10.1136/bjsports-2017-097608 – DOI
  1. Nunes EA, Colenso-Semple L, McKellar SR, et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J Cachexia Sarcopenia Muscle [Internet]. 2022;13(2):795–810. Available from doi: 10.1002/jcsm.12922 – DOI – PMC – PubMed
  1. Jäger R, Kerksick CM, Campbell BI, et al. International society of sports nutrition position stand: protein and exercise. J Int Soc Sports Nutr [Internet]. 2017;14(1):65. Available from http://jissn.biomedcentral.com/articles/10.1186/s12970-017-0177-8 – DOI – PMC – PubMed
  1. Nilsson LH. Liver glycogen content in man in the postabsorptive state. Scand J Clin Lab Invest [Internet]. 1973;32(4):317–323. Available from doi: 10.3109/00365517309084354 – DOI – PubMed
  1. Fernández- ElíElíAs VE, Ortega JF, Nelson RK, et al. Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans. Eur J Appl Physiol [Internet]. 2015;115(9):1919–1926. Available from doi: 10.1007/s00421-015-3175-z – DOI – PubMed
  1. Bone JL, Ross ML, Tomcik KA, et al. Manipulation of muscle creatine and glycogen changes dual x-ray absorptiometry estimates of body composition. Med Sci Sports Exerc [Internet]. 2017;49(5):1029–1035. Available from doi: 10.1249/MSS.0000000000001174 – DOI – PubMed
  1. Prior BM, Cureton KJ, Modlesky CM, et al. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J Appl Physiol [Internet]. 1997;83(2):623–630. Available from http://www.physiology.org/doi/10.1152/jappl.1997.83.2.623 – DOI – PubMed
  1. Saunders MJ, Blevins JE, Broeder CE. Effects of hydration changes on bioelectrical impedance in endurance trained individuals. Med Sci Sports Exerc [Internet]. 1998;30(6):885–892. Available from doi: 10.1097/00005768-199806000-00017 – DOI – PubMed
  1. Knechtle B, Müller G, Willmann F, et al. Fat oxidation in men and women endurance athletes in running and cycling. Int J Sports Med [Internet]. 2004;25:38–44. Available from doi: 10.1055/s-2003-45232 – DOI – PubMed
  1. Mittendorfer B, Horowitz JF, Klein S. Effect of gender on lipid kinetics during endurance exercise of moderate intensity in untrained subjects. Am J Physiol Endocrinol Metab [Internet]. 2002;283(1):E58–65. Available from doi: 10.1152/ajpendo.00504.2001 – DOI – PubMe 
  1. Oosthuyse T, Bosch AN. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med [Internet]. 2010;40(3):207–227. Available from doi: 10.2165/11317090-000000000-00000 – DOI – PubMed
  1. Devries MC. Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in women. Exp Physiol [Internet]. 2016;101(2):243–249. Available from doi:10.1113/EP085369 – DOI – PubMed
  1. Chen J-Q, Yager JD, Russo J. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta [Internet]. 2005;1746(1):1–17. Available from doi: 10.1016/j.bbamcr.2005.08.001 – DOI – PubMed
  1. Sims ST, Heather AK. Myths and methodologies: reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp Physiol [Internet]. 2018;103(10):1309–1317. Available from doi: 10.1113/EP086797 – DOI – PubMed
  1. Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. Med Sci Sports Exerc [Internet]. 2008;40(4):648–654. Available from doi: 10.1249/MSS.0b013e31816212ff – DOI – PubMed
  1. Maher AC, Akhtar M, Vockley J, et al. Women have higher protein content of β-oxidation enzymes in skeletal muscle than men. PLoS One [Internet]. 2010;5(8):e12025. Available from doi: 10.1371/journal.pone.0012025 – DOI – PMC – PubMed
  1. Kiens B, Roepstorff C, Glatz JFC, et al. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J Appl Physiol [Internet]. 2004;97(4):1209–1218. Available from doi: 10.1152/japplphysiol.01278.2003 – DOI – PubMed
  1. Miotto PM, McGlory C, Holloway TM, et al. Sex differences in mitochondrial respiratory function in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol [Internet]. 2018;314(6):R909–15. Available from doi: 10.1152/ajpregu.00025.2018 – DOI – PMC – PubMed
  1. Roepstorff C, Thiele M, Hillig T, et al. Higher skeletal muscle α 2 AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol [Internet]. 2006;574(1):125–138. Available from doi: 10.1113/jphysiol.2006.108720 – DOI – PMC – PubMed
  1. Eckel LA. The ovarian hormone estradiol plays a crucial role in the control of food intake in females. Physiol Behav [Internet]. 2011;104(4):517–524. Available from doi: 10.1016/j.physbeh.2011.04.014 – DOI – PMC – PubMed
  1. Butera PC. Estradiol and the control of food intake. Physiol Behav [Internet]. 2010;99(2):175–180. Available from doi: 10.1016/j.physbeh.2009.06.010 – DOI – PMC – PubMed
  1. Mela V, Vargas A, Meza C, et al. Modulatory influences of estradiol and other anorexigenic hormones on metabotropic, Gi/o-coupled receptor function in the hypothalamic control of energy homeostasis. J Steroid Biochem Mol Biol [Internet]. 2016;160:15–26. Available from doi: 10.1016/j.jsbmb.2015.07.014 – DOI – PMC – PubMed
  1. Navarro VM. Metabolic regulation of kisspeptin — the link between energy balance and reproduction. Nat Rev Endocrinol [Internet]. 2020;16(8):407–420. Available from doi: 10.1038/s41574-020-0363-7 – DOI – PMC – PubMed
  1. Castellano JM, Tena-Sempere M. Metabolic regulation of kisspeptin. Adv Exp Med Biol [Internet]. 2013;784:363–383. Available from doi: 10.1007/978-1-4614-6199-9_17 – DOI – PubMed
  1. Toufexis D, Rivarola MA, Lara H, et al. Stress and the reproductive axis. J Neuroendocrinol [Internet]. 2014;26(9):573–586. Available from doi: 10.1111/jne.12179 – DOI – PMC – PubMed
  1. Mountjoy M, Sundgot-Borgen JK, Burke LM, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med [Internet]. 2018;52(11):687–697. Available from doi: 10.1136/bjsports-2018-099193 – DOI – PubMed
  1. Sims ST, Kerksick CM, Smith-Ryan AE, et al. International society of sports nutrition position stand: nutritional concerns of the female athlete. J Int Soc Sports Nutr [Internet]. 2023;20(1):2204066. Available from doi: 10.1080/15502783.2023.2204066 – DOI – PMC – PubMed
  1. Durkalec-Michalski K, Nowaczyk PM, Siedzik K. Effect of a four-week ketogenic diet on exercise metabolism in CrossFit-trained athletes. J Int Soc Sports Nutr [Internet]. 2019;16(1):16. doi: 10.1186/s12970-019-0284-9 – DOI – PMC – PubMed
  2. Koerich ACC, Borszcz FK, Thives Mello A, et al. Effects of the ketogenic diet on performance and body composition in athletes and trained adults: a systematic review and bayesian multivariate multilevel meta-analysis and meta-regression. Crit Rev Food Sci Nutr [Internet]. 2023;63(32):11399–11424. doi: 10.1080/10408398.2022.2090894 – DOI – PubMed
error: Content is protected !!